
Foundations of Programming
Variables, data and methods

Learning outcomes/key ideas

• Describe (and change) the type of data in Python

• Store data in variables using assignment statements

• Describe the difference between printing and returning values

• Call built-in functions in Python

• Load libraries

How much do you like Picobot?

• A. A lot

• B. Some

• C. Not much

• D. Not at all

How far did you get?

• A. Empty room

• B. Maze

• C. One of the additional rooms and/or Empty room or maze in fewer
rules

• D. A general solution for ALL the rooms

https://www.domo.com/learn/data-never-sleeps-6

"There are 2.5 quintillion bytes of data created each day at
our current pace, but that pace is only accelerating with
the growth of the Internet of Things (IoT)."
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-
much-data-do-we-create-every-day-the-mind-blowing-stats-
everyone-should-read

BIGData

https://www.domo.com/learn/data-never-sleeps-5?aid=ogsm072517_1&sf100871281=1
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read

Python Data Types

bool

int

long

float 3.14

10**100

42

True

False

Numeric

Name Example What is it?

values with a
fractional part

integers > 2147483647

integers <= 2147483647

the results from a comparison:

==, !=, <, >, <=, >= "Boolean value"

Datatypes as genes…

bool

Dominant

int

long

float

Recessive

41 + True

10**100 - 10**100

1.0 / 5

1 + 5

What will these

results be?

Why?

2**False == True

All data in Python has a type
But you can change its type… implicitly (i.e. last slide) or explicitly through casting

>>> int(4.2)

>>> float(True)

>>> int(4)/5

>>> int(4/5)

>>> str(42)

Python

Operators

I’d go with parentheses over precedence

Precedence

*

%

**

/

>

<

==

+

-

Caution Level

=
Highest

Lowest

**

* %/

> < ==

+ -

=

-

()

()

It's not worth remembering all these %+/* things!

remainder

power

is equal to

set equal to

divide

as usual

Key ideas so far

• All data has a type in Python

• You can change the type of data in Python (and sometimes it changes
implicitly)

• You can find out the type of a piece of data using the built-in function
type()

the "equals" operators

= != ==

This is true – but what is it saying!?

the "equals" operators

= != ==

I want === !

SET equals isn't equal to IS equals

= names data

Aiden, Braden,
Kaden…?

Ava, Abigail,
Caylin…?

Choosing the right
name is more important
than I thought.

>> x = 41

>> y = x + 1

x and y are called “variables”
Don’t confuse them with variables from math

In Python, variables store data

Inside the machine…

x = 41

y = x + 1

What's happening in python:

Inside the machine…

x = 41

y = x + 1

name: x

type: int

LOC: 300

41

What is happening behind the scenes:

What's happening in python:

"variables as containers"

memory location 300

id, del
Computation Data Storage

name: y

type: int

LOC: 312

42

memory location 312

Memory! Random Access
Memory (RAM)

byte = 8 bits

word in 2005 = 4 bytes = 32 bits

RAM is a long list of
memory locations:

bit = 1 "bucket" of charge

name: y

type: int

LOC: 312

In Python, an integer
uses 4 bytes (plus tax).

on or off

Wow! Who knew they make
memory out of wicker?42

word in 2012 = 8 bytes = 64 bits

assignment, not equality!

Aiden, Braden,
Kaden…?

Ava, Abigail,
Caylin…?

>> x = 41

>> y = x + 1

= is an ACTIVE, DIRECTIONAL operator. It means:

“First calculate the value on the right hand side,
and then put it into the box labeled with the name
from the left hand side (replacing what was there,

if necessary).”

It does not test for equality (that’s ==).

x y

“Put 41 into the box labeled x”

“Get the value out of x (41), and add 1 to it (42).
Put that value (42) into the box labeled y”

Re-naming…!

>> x = 41

>> y = x + 1

>> x

41

>> y

42

>> x = x + y

>> x

?? (1)

>> y

??

x y

“Find the value in x and add it to the
value in y. Then place that value back
into x, replacing what was there.”

What value is displayed for x at ??(1)?
A. 41
B. 42
C. 83
D. 84

Re-naming…!

>> x = 41

>> y = x + 1

>> x

41

>> y

42

>> x = x + y

>> x

?? (1)

>> y

?? (2)

x y

“Find the value in x and add it to the
value in y. Then place that value back
into x, replacing what was there.”

What value is displayed for y at ??(2)?
A. 41
B. 42
C. 83
D. 84

Re-naming…!

>> x = 42

>> y = x

>> x = 101

>> x

??

>> y

??

x y

What values are displayed for x and y?
x y

A. 42 42
B. 101 42
C. 101 101
D. None of these

When in doubt, draw it out!!

Key ideas so far

• All data has a type in Python

• You can change the type of data in Python (and sometimes it changes
implicitly)

• You can find out the type of a piece of data using the built-in function
type()

• Variables store data

• The assignment operator takes the value from the right hand side and
stores it into the variable on the left hand side

Strings

>>> "Christine"

'Christine'

>>> 'Christine'

'Christine'

>>> type("Christine")

<class 'str'>

>>> Christine

What will idle show if I press enter
after the last line?
A. 'Christine'
B. <class 'str'>
C. Error

The print function

>>> name = "Christine"

>>> name

'Christine'

>>> print(name)

Christine

>>> print("Hello", name)

>>> print("Hello", "name")

print is a function that is built-in to Python
It takes one or more arguments (separated by commas)
It converts these values to Strings and displays them.

Side effects vs. values

>>> name = "Christine"

>>> val = print(name)

(1)

>>> val

(2)

What will be displayed at (1)?
A. 'Christine'
B. Christine
C. name
D. val
E. Nothing

What will be displayed at (2)?
A. 'Christine'
B. name
C. val
D. Nothing
E. Error

Unlike print, some functions

return (give back) a value

>>> name = "Christine"

>>> numChars = len(name)

>>> numChars

Python built-in functions: https://docs.python.org/3/library/functions.html

What will the value of numChars be?
A. 4
B. 9
C. Something else

Other functions have to be loaded

from libraries

>>> name = "Christine"

>>> numChars = len(name)

>>> numChars

>>> myTweet = "I'm here at SPIS and it's really fun.
I've met lots of cool people and my projects for FoCS are
the best. I think San Diego is amazing. Last night I
had some fish tacos and tonight I'm going to have some
sushi."

What if I want to shorten this to 140 characters so I can tweet about it?
textwrap to the rescue!

Other functions have to be loaded

from libraries
>>> name = "Christine"

>>> numChars = len(name)

>>> numChars

>>> myTweet = "I'm here at SPIS and it's really fun.
I've met lots of cool people and my projects for FoCS are
the best. I think San Diego is amazing. Last night I
had some fish tacos and tonight I'm going to have some
sushi."

>>> import textwrap

>>> textwrap.shorten(myTweet, 140, placeholder="...")

What if I want to shorten this to 140 characters so I can tweet about it?
textwrap to the rescue! https://docs.python.org/3/library/textwrap.html

Key ideas so far

• All data has a type in Python

• You can change the type of data in Python (and sometimes it changes implicitly)

• You can find out the type of a piece of data using the built-in function type()

• Variables store data

• The assignment operator takes the value from the right hand side and stores it
into the variable on the left hand side

• Functions are "packaged up" pieces of code that do something (hopefully useful)

• arguments (sometimes called parameters, more on this later) are data passed in
to a function

• Some functions return a value, while others do not

• Python has a few built-in functions, many more in libraries, or you can write your
own! (Coming next)

Running code from a file

>>> name = "Christine"

>>> numChars = len(name)

>>> numChars

9

>>> print("Hello", name)

Hello Christine

I like this code. I want to save it.

To do so I must put it in a file! (Demo)

If I put these lines in a file and run the file, what
will Python print?

A. 9
Hello Christine

B. Hello Christine

C. Nothing

name = "Christine"

numChars = len(name)

numChars

print("Hello", name)

fileDemo.py

Functioning in Python

my own function!

def greeting(personToGreet):

""" prints a friendly greeting """

print("Hello", personToGreet)

Functioning in Python

my own function!

def greeting(personToGreet):

""" prints a friendly greeting """

print("Hello " + str(personToGreet))

I can load this function by pressing F5.
I can then call it as follows:
>>> name = "Christine"

>>> greeting("name")

What will the function call to the left print?
A. Hello Christine
B. Hello name
C. Nothing
D. It will cause an error

Flow of Execution

>>> greeting("Eduardo")

When you call a function, Python executes the function starting at the
first line in its body, and carries out each line in order (though some
instructions cause the order to change… more soon)

my own function!

def greeting(personToGreet):

""" prints a friendly greeting """

print("Hello " + str(personToGreet))

print("Welcome to SPIS!")

Common errors…

return vs. print

def greetingReturned(personToGreet):

""" returns a friendly greeting """

return "Hello" + str(personToGreet)

I can load this function by pressing F5.
I can then call it as follows:
>>> name = "Christine"

>>> greetingReturned(name)

What will be displayed when I make this function call?
A. Hello Christine
B. Hello name
C. Nothing
D. It will cause an error

return vs. print

def greetingReturned(personToGreet):

""" returns a friendly greeting """

return "Hello" + str(personToGreet)

def greeting(personToGreet):

""" prints a friendly greeting """

print("Hello " + str(personToGreet))

Write code in the shell that can illustrate the difference between these two functions. Hint: use
variables to store the value returned from the function.

Key ideas so far

• All data has a type in Python

• You can change the type of data in Python (and sometimes it changes implicitly)

• You can find out the type of a piece of data using the built-in function type()

• Variables store data

• The assignment operator takes the value from the right hand side and stores it into the
variable on the left hand side

• Functions are "packaged up" pieces of code that do something (hopefully useful)

• arguments (sometimes called parameters, more on this later) are data passed in to a
function

• Some functions return a value, while others do not

• Python has a few built-in functions, many more in libraries, or you can write your own!

• Returning is not the same as printing!

