
Foundations of Programming
The Turtle, Lists and Tuples

Announcements

• Lab03 is released. We'll preview it today.

Learning outcomes/key ideas

• Write more complex functions in Python

• Explain how the Turtle works in Python

• Explain the concept of a reference and draw memory model diagrams
that use references

• Use the data types list and tuple

Python's Turtle Package
import turtle

turtle.forward(100)

turtle.right(90)

turtle.backward(200)

Python's Turtle Package
import turtle

turtle.forward(100)

turtle.right(90)

turtle.backward(200)

print(turtle.position())

What happens if I remove the
parentheses from turtle.position()
on the last line? I.e.
print(turtle.position)

Turtles, Turtles everywhere
(and introducing references)

import turtle

firstTurtle = turtle.Turtle()

secondTurtle = turtle.Turtle()

firstTurtle.forward(100)

secondTurtle.right(90)

secondTurtle.backward(200)

firstTurtle

secondTurtle

Two different turtle "objects" with the same capabilities

The variables store "references" (location of the Turtle in memory) to each Turtle.

Turtles, Turtles everywhere
(and introducing references)

import turtle

firstTurtle = turtle.Turtle()

secondTurtle = turtle.Turtle()

secondTurtle = firstTurtle

firstTurtle.forward(100)

secondTurtle.right(90)

secondTurtle.backward(200)

firstTurtle

secondTurtle

How does the diagram change with the line in red? How does
that change what is drawn?

Memory Models in Python, revisited
everything in Python is a reference!

x y

x = 42

y = 75

y = x

x = 101

maria = turtle.Turtle()

jose = turtle.Turtle();

maria = jose;

jose.forward(100);

maria jose

CS Concepts: References

maria

jose

maria = turtle.Turtle()

jose = turtle.Turtle()

maria = jose

maria

jose

X

CS Concepts: References

maria

jose

maria

jose

X

The arrows in maria and jose’s
boxes are just graphical
representation of the reference (i.e.,
location of) the object in memory.

maria = turtle.Turtle()

jose = turtle.Turtle()

maria = jose

CS Concepts: References

maria

jose

500

352

The arrows in maria and jose’s
boxes are just graphical
representation of the reference (i.e.,
location of) the object in memory.

maria = turtle.Turtle()

jose = turtle.Turtle()

CS Concepts: References

maria

jose

The arrows in maria and jose’s
boxes are just graphical
representation of the reference (i.e.,
location of) the object in memory.

maria = turtle.Turtle()

jose = turtle.Turtle()

CS Concepts: References

maria

jose

maria

jose

500

352

The arrows in maria and jose’s
boxes are just graphical
representation of the reference (i.e.,
location of) the object in memory.

500

352352

maria = turtle.Turtle()

jose = turtle.Turtle()

maria = jose

CS Concepts: References

maria

jose

maria

jose

500

352

The arrows in maria and jose’s
boxes are just graphical
representation of the reference (i.e.,
location of) the object in memory.

352

352

maria = turtle.Turtle()

jose = turtle.Turtle()

maria = jose

CS Concepts: References

maria

jose

maria

jose

The arrows in maria and jose’s
boxes are just graphical
representation of the reference (i.e.,
location of) the object in memory.

maria = turtle.Turtle()

jose = turtle.Turtle()

maria = jose

CS Concepts: References

maria

jose

maria

jose

maria = turtle.Turtle()

jose = turtle.Turtle()

maria = jose

The arrows in maria and jose’s boxes are just graphical representation of the reference (i.e.,
location of) the object in memory.

This holds for all Object types (not for primitive types)

THIS IS THE HARDEST THING YOU WILL LEARN IN CSE8A/CSE11. MASTER THIS IDEA AND YOU
WILL ACE CSE8A/CSE11 (AND MUCH MORE)

Corrected Memory Model

x y 42 101 75 42

x = 42

y = 75

y = x

x = 101

maria = turtle.Turtle()

jose = turtle.Turtle()

maria = jose

jose.foward(100)

maria jose

Notice the difference!

Variable reassignment

Object manipulation

Variable assignment challenge
• What does this code draw?

import turtle

maria = turtle.Turtle()

jose = turtle.Turtle()

maria.penup()

jose.penup()

maria.setpos(-100, 0)

jose.setpos(-100, -50)

maria.pendown()

jose.pendown()

maria = jose

dist1 = 100

dist2 = 200

dist1 = dist2

dist2 += 150

maria.forward(dist1)

jose.forward(dist2)

Key ideas so far

• Variables have their own scope. When a function is called the values are
passed in, not the variables themselves.

• Returning is not the same as printing. Only returning passes data back
from a function.

• Conditional statements can be tricky! Practice, practice, practice!

• All variables in Python store references. References are memory addresses
where data is located.

• Assignment statements copy the reference stored in the variable

• Two variables can store references to the same piece of data. If that piece
of data can change (e.g. the Turtles) then the data seen by BOTH references
will change.

Turtles and Functions
def drawShape(theTurtle):

''' Draw a simple shape with the turtle passed in '''

theTurtle.forward(100)

theTurtle.right(90)

theTurtle.forward(100)

theTurtle.right(90)

theTurtle.forward(100)

theTurtle.right(90)

theTurtle.forward(100)

theTurtle.right(90)

Introducing Lists
Lists allow you to store multiple values
def drawShapeWithLists(theTurtle):

sideLengths = [100, 200, 50, 200]

angles = [90, 120, 40, 60]

theTurtle.forward(sideLengths[0])

theTurtle.right(angles[0])

theTurtle.forward(sideLengths[1])

theTurtle.right(angles[1])

theTurtle.forward(sideLengths[2])

theTurtle.right(angles[2])

theTurtle.forward(sideLengths[3])

theTurtle.right(angles[3])

Introducing Tuples
Tuples also allow you to store multiple values
(unordered)

def drawShapeWithATuple(theTurtle):

len_angle = (100, 90)

theTurtle.forward(len_angle[0])

theTurtle.right(len_angle[1])

theTurtle.forward(len_angle[0])

theTurtle.right(len_angle[1])

theTurtle.forward(len_angle[0])

theTurtle.right(len_angle[1])

theTurtle.forward(len_angle[0])

theTurtle.right(len_angle[1])

You can combine Lists and Tuples (or really,
any types)
def drawShapeWithListAndTuple(theTurtle):

sides = [(100, 60), (200, 120), (100, 60), (200, 120)]

side = sides[0]

theTurtle.forward(side[0])

theTurtle.right(side[1])

side = sides[1]

theTurtle.forward(side[0])

theTurtle.right(side[1])

side = sides[2]

theTurtle.forward(side[0])

theTurtle.right(side[1])

side = sides[3]

theTurtle.forward(side[0])

theTurtle.right(side[1])

Indexing lists and tuples

sides = [(100, 60), (200, 120), (100, 60), (200, 120)]

value = sides[2]

What is the value of value after the assignment statement?
A. 60
B. 200
C. (200, 120)
D.(100, 60)

Indexing lists and tuples

sides = [(100, 60), (200, 120), (100, 60), (200, 120)]

value = sides[2]

Write as many Python statements (or sets of statements) as you can that
will assign the value 120 to value, using the list sides

Key ideas so far

• Variables have their own scope. When a function is called the values are passed
in, not the variables themselves.

• Returning is not the same as printing. Only returning passes data back from a
function.

• Conditional statements can be tricky! Practice, practice, practice!

• All variables in Python store references. References are memory addresses where
data is located.

• Assignment statements copy the reference stored in the variable

• Two variables can store references to the same piece of data. If that piece of data
can change (e.g. the Turtles) then the data seen by BOTH references will change.

• Lists and tuples are compact ways of storing a "bunch" of data.

• You can access the individual elements in a list of a tuple using the index of that
element. Indexes start at 0. The last index is the length of the list minus 1.

Not much is changing… is there an easier way
to do this?
def drawShapeWithListAndTuple(theTurtle):

sides = [(100, 60), (200, 120), (100, 60), (200, 120)]

side = sides[0]

theTurtle.forward(side[0])

theTurtle.right(side[1])

side = sides[1]

theTurtle.forward(side[0])

theTurtle.right(side[1])

side = sides[2]

theTurtle.forward(side[0])

theTurtle.right(side[1])

side = sides[3]

theTurtle.forward(side[0])

theTurtle.right(side[1])

Not much is changing… is there an easier way
to do this? YES! for loops!
def drawShapeWithLoop(theTurtle):

sides = [(100, 60), (200, 120), (100, 60), (200, 120)]

for side in sides:

theTurtle.forward(side[0])

theTurtle.right(side[1])

Reading from a csv file
import csv

…

hurricaneFile = "data/irma.csv"

The line below is a little magical. It opens the file,

with awareness of any errors that might occur.

with open(hurricaneFile, 'r') as csvfile:

This line gives you an "iterator" you can use to get each line

in the file.

pointreader = csv.reader(csvfile)

You'll need to add some code here, before the loop

for row in pointreader:

print("Date:", row[0], "Time:", row[1])

Key ideas so far

• Variables have their own scope. When a function is called the values are passed in, not the
variables themselves.

• Returning is not the same as printing. Only returning passes data back from a function.

• Conditional statements can be tricky! Practice, practice, practice!

• All variables in Python store references. References are memory addresses where data is located.

• Assignment statements copy the reference stored in the variable

• Two variables can store references to the same piece of data. If that piece of data can change
(e.g. the Turtles) then the data seen by BOTH references will change.

• Lists and tuples are compact ways of storing a "bunch" of data.

• You can access the individual elements in a list of a tuple using the index of that element. Indexes
start at 0. The last index is the length of the list minus 1.

• For loops allow you to repeat an action for each element in type of data that is "iteratable". Lists
and tuples are iteratable. (The difference is tuples are not mutable—we'll get to that later).

