
Foundations of Programming
Probabilities and Naïve Bayes models



Announcements

• Depth & Breadth
• Depth: Data Mutation, nested loops, if-statements and pictures

• Breadth: ??

• Diversity in Computing lunch form: 
https://goo.gl/forms/OqIkiuhmOQbWTQWs2

https://goo.gl/forms/OqIkiuhmOQbWTQWs2


Learning outcomes/key ideas

• Basics of probability

• Representing Joint Probability

• Inference by enumeration

• Bayes Rule

• Naïve Bayes for sentiment classification



Text 
sentiment 
classification



Basic Probability Theory

• An experiment has a set of potential outcomes, e.g., throw a dice

• The sample space of an experiment is the set of all possible 
outcomes, e.g., {1, 2, 3, 4, 5, 6}

• A random variable can take on any value in the sample space

• An event is a subset of the sample space.

• {2}

• {3, 6}

• even = {2, 4, 6}

• odd = {1, 3, 5}



Probability as Relative Frequency

H H H H HT T T T T

Total Flips: 10
Number Heads: 5
Number Tails: 5Probability of Heads:

Number Heads / Total Flips = 0.5

Probability of Tails:
Number Heads / Total Flips = 0.5 = 1.0 – Probability of Heads

The experiments, the sample space 
and the events must be defined 
clearly for probability to be 
meaningful



Probabilities and classification

We are trying to determine that the probability that a given movie 
review is positive vs. negative.   We will select the classification that has 
a higher probability.

One quantity we care about in this task is the prior probability of the
sentiment of a review. In other words:

𝑃 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = 𝑝𝑜𝑠 and 𝑃 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = 𝑛𝑒𝑔

True or false: 𝑃 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = 𝑝𝑜𝑠 + 𝑃 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = 𝑛𝑒𝑔 = 1

A. True    B. False    C. It depends



Prior probability

Of 100 students completing a course, 20 were business major. Ten students 
received As in the course, and three of these were business majors.

What is the probability that a randomly selected student got an A?
P(A = True) = ?

A. 0.03    B. 0.1    C. 0.3   D. 0.2   E. None of these



Joint probability: Two or more events BOTH 
happening

Of 100 students completing a course, 20 were business major. Ten students 
received As in the course, and three of these were business majors.

B(usiness
student) = True

B(usiness
student) = False

A = True

A = False

What is the probability that a randomly selected student is a 
Business student and gets an A?
P(A = True, B = True) = ?

"the probability of A and B"
A. 0.03    B. 0.1    C. 0.3   D. 0.2   E. None of these

P(A=True) = P(A=True, B=True) + P (A=True, B=False)

marginalization

Will the values in a joint probability table 
always sum to 1?
A. Yes B. No



But how does evidence change things?  
Conditional probability

Of 100 students completing a course, 20 were business major. Ten students 
received As in the course, and three of these were business majors What is the 
probability of A after knowing B is true?

B(usiness
student) = True

B(usiness
student) = False

A = True 0.03 0.07

A = False 0.17 0.73

What is the probability that a randomly selected business student
gets an A?
P(A = True | B = True) = ?

"the probability of A given B"

A. 0.03    B. 0.1    C. 0.3   D. 0.2   E. None of these

P(A=True | B = True) = P(A=True, B=True) / P(B=True)



Inference

• Often we will be able to measure some information, but we want to make 
statements about things that are not directly in our table of information.

• E.g., we want to know what is the probability of a toothache in general (the prior 
probability), never mind whether there's a cavity, catch, etc.

Inference = Using known facts to derive others



Inference by enumeration

• Start with the joint probability distribution:

• For any proposition φ, sum the atomic events where it is true: P(φ) = Σω:ω╞φ P(ω)



Inference by enumeration

• Start with the joint probability distribution:

• For any proposition φ, sum the atomic events where it is true: P(φ) = Σω:ω╞φ P(ω)

• P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2



Inference by enumeration

• Start with the joint probability distribution:

• Can also compute conditional probabilities:

P(cavity | toothache) = P(cavity  toothache)

P(toothache)

= 0.016+0.064

0.108 + 0.012 + 0.016 + 0.064

= 0.4



Normalization

P(cavity | toothache) = P(cavity  toothache)
P(toothache)

= 0.108+0.012
0.108 + 0.012 + 0.016 + 0.064

P(cavity | toothache) = P(cavity  toothache)
P(toothache)

= 0.016+0.064
0.108 + 0.012 + 0.016 + 0.064

These terms are a pain to compute



Normalization

P(cavity | toothache) =                   0.12

0.108 + 0.012 + 0.016 + 0.064

P(cavity | toothache)   = 0.08

0.108 + 0.012 + 0.016 + 0.064



Normalization

P(cavity | toothache) = α 0.12

P(cavity | toothache)   = α 0.08

α =                        1
0.108 + 0.012 + 0.016 + 0.064

P(cavity | toothache) + P(cavity | toothache) = α 0.08 + α 0.12 = ??  

What value is ??
A. 1
B. α
C. 0.108 + 0.012 + 0.016 + 0.064
D. Something else
E. I have no idea!



Normalization

P(cavity | toothache) + P( cavity | toothache) = α 0.12 + α 0.08 = 1

α = 1 / (0.12 + 0.08)

α = 1 / 0.2 = 5

<P(cavity | toothache), P( cavity | toothache)> = < α 0.12, α 0.08 > = <0.6, 0.4>

α =                        1
0.108 + 0.012 + 0.016 + 0.064

Compare to computing:



Bayes Theorem

If P(E2)>0, then

P(E1|E2) = P(E2|E1)P(E1)  / P(E2)

This can be derived from the definition of conditional probability.



Bayes Rule example
A patient takes a lab test and the result comes back positive. The test 

has a false negative rate of 2% and false positive rate of 3%. 

Furthermore, 0.8% of the entire population have this cancer.

What is the probability of cancer if we know the test result is positive?

"False negative" = Considering only situations where there is cancer, test is negative
"False positive" = Considering only situations where there is not cancer, test is positive



Bayes Rule example
A patient takes a lab test and the result comes back positive. The test 

has a false negative rate of 2% and false positive rate of 3%. 

Furthermore, 0.8% of the entire population have this cancer.

What is the probability of cancer if we know the test result is positive?

We know: We want:

"False negative" = Considering only situations where there is cancer, test is negative
"False positive" = Considering only situations where there is not cancer, test is positive



Bayes Rule example
A patient takes a lab test and the result comes back positive. The test 

has a false negative rate of 2% and false positive rate of 3%. 

Furthermore, 0.8% of the entire population have this cancer.

What is the probability of cancer if we know the test result is positive?

We know: We want:

P(Test=pos|¬cancer) = 0.03  FP

P(Test=neg|cancer) = 0.02  FN

P(cancer) = 0.008  Prior

P(cancer|Test=pos)



Bayes Rule example
A patient takes a lab test and the result comes back positive. The test 

has a false negative rate of 2% and false positive rate of 3%. 

Furthermore, 0.8% of the entire population have this cancer.

What is the probability of cancer if we know the test result is positive?

We know: We want:

P(Test=pos|cancer) = 0.98

P(Test=neg|cancer) = 0.02  FN

P(¬cancer) = 0.992

P(cancer|Test=pos) = 

P(Test=pos|cancer)P(cancer) 
P(Test=pos)P(Test=neg|¬cancer) = 0.97

P(Test=pos|¬cancer) = 0.03  FP

P(cancer) = 0.008  Prior

0.98 0.008

P(Test=pos) = P(Test=pos, cancer) + 
P(Test=pos, ¬cancer)

P(Test=pos, cancer) = P(Test=pos|cancer)P(cancer)

P(Test=pos, ¬cancer) = P(Test=pos|¬cancer)P(¬cancer)

0.98 0.008

0.03 0.992

0.00784

0.02976

0.0376

= 0.21



Returning to review sentiment classification…

Our evidence is the text in the review.  We want to estimate

𝑃 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = 𝑝𝑜𝑠 𝑡𝑒𝑥𝑡)

But we could never directly estimate this because we're unlikely to have ever seen
this specific text before! How can Bayes rule help us?

𝑃 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = 𝑝𝑜𝑠 𝑡𝑒𝑥𝑡) =
𝑃 𝑡𝑒𝑥𝑡 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = 𝑝𝑜𝑠) 𝑃(𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = 𝑝𝑜𝑠)

𝑃(𝑡𝑒𝑥𝑡)



Returning to review sentiment classification…

𝑃 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = 𝑝𝑜𝑠 𝑡𝑒𝑥𝑡)∝𝑃 𝑡𝑒𝑥𝑡 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = 𝑝𝑜𝑠) 𝑃(𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = 𝑝𝑜𝑠)

Simplifying assumption 1: Represent text with a "bag of words" representation

𝑃 𝑤1 = 𝑡𝑟𝑢𝑒,𝑤2 = 𝑡𝑟𝑢𝑒,𝑤3 = 𝑓𝑎𝑙𝑠𝑒, … 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = 𝑝𝑜𝑠)

But can we learn this??



Independence: Intuition

• Events are independent if one has nothing whatever to do with 
others. Therefore, for two independent events, knowing one 
happening does not change the probability of the other event 
happening.
• one toss of coin is independent of another coin (assuming it is a regular coin).

• price of tea in England is independent of the result of general election in 
Canada.



Independence: Definition
• Events A and B are independent iff:

P(A, B) = P(A) x P(B)
which is equivalent to

P(A|B) = P(A) and

P(B|A) = P(B) 

when P(A, B) >0.

T1: the first toss is a head.

T2: the second toss is a tail.

P(T2|T1) = P(T2)



Conditional Independence

• Dependent events can become independent given 
certain other events.

• Example,
• Size of shoe

• Size of vocabulary

• ??

• Two events A, B are conditionally independent given 
a third event C iff

P(A|B, C) = P(A|C)



Conditional Independence: Utility via Naïve Bayes

• Let E1 and E2 be two events, they are conditionally independent given E iff
P(E1|E, E2)=P(E1|E), 

that is the probability of E1 is not changed after knowing E2, given E is true.

• Equivalent formulations:
P(E1, E2|E)=P(E1|E) P(E2|E)

P(E2|E, E1)=P(E2|E)

𝑃 𝑤1 = 𝑡𝑟𝑢𝑒,𝑤2 = 𝑡𝑟𝑢𝑒,𝑤3 = 𝑓𝑎𝑙𝑠𝑒, … 𝑆𝑒𝑛𝑡 = 𝑝𝑜𝑠)
= 𝑃 𝑤1 = 𝑡𝑟𝑢𝑒 𝑆𝑒𝑛𝑡 = 𝑝𝑜𝑠) 𝑃 𝑤2 = 𝑡𝑟𝑢𝑒 𝑆𝑒𝑛𝑡 = 𝑝𝑜𝑠)𝑃 𝑤3 = 𝑓𝑎𝑙𝑠𝑒 𝑆𝑒𝑛𝑡 = 𝑝𝑜𝑠)…

A ha!  These we can learn from data!



Returning to review sentiment classification…

𝑃 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = 𝑝𝑜𝑠 𝑡𝑒𝑥𝑡)∝𝑃 𝑡𝑒𝑥𝑡 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = 𝑝𝑜𝑠) 𝑃(𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = 𝑝𝑜𝑠)

Simplifying assumption 1: Represent text with a "bag of words" representation

𝑃 𝑤1 = 𝑡𝑟𝑢𝑒,𝑤2 = 𝑡𝑟𝑢𝑒,𝑤3 = 𝑓𝑎𝑙𝑠𝑒, … 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = 𝑝𝑜𝑠)

Simplifying assumption 2: Words are conditionally independent given sentiment

𝑃 𝑤1 = 𝑡𝑟𝑢𝑒,𝑤2 = 𝑡𝑟𝑢𝑒,𝑤3 = 𝑓𝑎𝑙𝑠𝑒, … 𝑆𝑒𝑛𝑡 = 𝑝𝑜𝑠)
= 𝑃 𝑤1 = 𝑡𝑟𝑢𝑒 𝑆𝑒𝑛𝑡 = 𝑝𝑜𝑠) 𝑃 𝑤2 = 𝑡𝑟𝑢𝑒 𝑆𝑒𝑛𝑡 = 𝑝𝑜𝑠)𝑃 𝑤3 = 𝑓𝑎𝑙𝑠𝑒 𝑆𝑒𝑛𝑡 = 𝑝𝑜𝑠)…



Training a Naïve Bayes classifier

𝑃 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = 𝑝𝑜𝑠 𝑡𝑒𝑥𝑡)∝𝑃 𝑡𝑒𝑥𝑡 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = 𝑝𝑜𝑠) 𝑃(𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = 𝑝𝑜𝑠)

Simplifying assumption 1: Represent text with a "bag of words" representation

𝑃 𝑤1 = 𝑡𝑟𝑢𝑒,𝑤2 = 𝑡𝑟𝑢𝑒,𝑤3 = 𝑓𝑎𝑙𝑠𝑒, … 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = 𝑝𝑜𝑠)

Simplifying assumption 2: Words are conditionally independent given sentiment

𝑃 𝑤1 = 𝑡𝑟𝑢𝑒,𝑤2 = 𝑡𝑟𝑢𝑒,𝑤3 = 𝑓𝑎𝑙𝑠𝑒, … 𝑆𝑒𝑛𝑡 = 𝑝𝑜𝑠)
= 𝑃 𝑤1 = 𝑡𝑟𝑢𝑒 𝑆𝑒𝑛𝑡 = 𝑝𝑜𝑠) 𝑃 𝑤2 = 𝑡𝑟𝑢𝑒 𝑆𝑒𝑛𝑡 = 𝑝𝑜𝑠)𝑃 𝑤3 = 𝑓𝑎𝑙𝑠𝑒 𝑆𝑒𝑛𝑡 = 𝑝𝑜𝑠)…



Practice with Probability

• Which of the following statements are generally true?  (If they are 
true only in certain conditions, state what the conditions are)

P(A,B) = P(A)*P(B)

P(A,B) = P(A|B)

P(A,B) = P(A|B)P(B)

P(A|B) + P(A|¬B) = 1

P(¬A) + P(A) = 1

P(¬A, B) + P(A, B) = P(B)

P(¬A|B) + P(A|B) = P(B)


