Foundations of Programming

Probabilities and Naive Bayes models



Announcements

* Depth & Breadth
* Depth: Data Mutation, nested loops, if-statements and pictures
* Breadth: ??

* Diversity in Computing lunch form:
https://goo.gl/forms/OqlkiuhmOQbWTQWSs2



https://goo.gl/forms/OqIkiuhmOQbWTQWs2

Learning outcomes/key ideas

* Basics of probability

* Representing Joint Probability

* Inference by enumeration

* Bayes Rule

* Naive Bayes for sentiment classification



Text
sentiment
classification

® 93%
K 47%
K 20%
® 97%
® 81%
® 70%
® 96%

e B I i

23

What's the Tomatometer®? RT Critics  SIGN UP | LOG IN

e
T thes

TRENDING ON RT Best Netflix Rom-coms Blade: 20 Years Later Messed Up '80s Kids Movies Happytime Murders Reviews

’ CS
¥ o R

NETFLIX'S BEST ROM-COMS, RANKED

To All The Boys I've Loved Before rockets to near the top of our just-
updated list

RENEWED & CANCELLED TV "
Bye-zinga: Big Bang Theory ﬁ
ending after this season ﬁ

LA

MELISSA MCCARTHY

All her movies ranked by
Tomatometer!

2

Z-\ . . (L. PN

FEATURED MOVIE sponsorea NEW TV TONIGHT

(:a;é;'(:h hslans ® 100% Wynonna Earp
PG-13, 2 hr. ® 75%  The Innocents
Aug 15, 2018 noscoever  Safe Harbour
noscorever  In Search Of
MOVIES OPENING THIS WEEK GetTickets  , _ Hile
K 25%  The Happytime Murders AUG 24 NoSaivi  Diffcast
No Score Yet AX.L. AUG 24
View All
®90% Searching AUG 24 o
#55% Papillon AUG 24 MOST POPULAR TV ON RT
10,
®60%  The Bookshop AUG 24 K 10% Insatiable
View All | 86% Castle Rock
& 100% The Sinner
P BOX OFFICE G
TOP BOX OFFIC Get Tickets & 93% Sharp Objects
= 93% Crazy Rich Asians $26.6M @ 100% Cobra Kai
% 47%  The Meg $21.3M @ 98%  Better Call Saul ) 2 :
* 20% Mile 22 $13.8M & 90% Marvel's Cloak & Dagger ; BASED ON THE BEST-SELLING NOVEL
| o97% Mission: Impossible - Fallout $10.9M Nescorevet  Voltron: Legendary Defender ! C RA ZY
®381%  Apha $10.5M ®89%  Sacred Games s
® 70%  Christopher Robin $OM #86%  Succession — L
M| 96% BlacKkKlansman $7.5M 2

* 9% Slender Man $4.9M view Al AS l A N S
®61%  Hotel Transylvania 3: Summer... $3.9M TOP DVD & STREAMING MOVIES
= 80% Mamma Mia! Here We Go Again  $3.5M FandangoNOW | Netfiix | iTunes | Amazon | More... BRI PLAYING




Basic Probability Theory

* An experiment has a set of potential outcomes, e.g., throw a dice

* The sample space of an experiment is the set of all possible
outcomes, e.g., {1, 2, 3, 4, 5, 6}

A random variable can take on any value in the sample space

* An event is a subset of the sample space.
* {2}
* {3, 6}
e even={2,4,6}
e odd =11, 3,5}



Probability as Relative Frequency

Total Flips: 10
Number Heads: 5

Probability of Heads: Number Tails: 5
Number Heads / Total Flips = 0.5

Probability of Tails:
Number Heads / Total Flips = 0.5 = 1.0 — Probability of Heads

The experiments, the sample space
and the events must be defined
clearly for probability to be
meaningful



Probabilities and classification

We are trying to determine that the probability that a given movie
review is positive vs. negative. We will select the classification that has
a higher probability.

One quantity we care about in this task is the prior probability of the
sentiment of a review. In other words:

P(Sentiment = pos) and P(Sentiment = neg)

True or false: P(Sentiment = pos) + P(Sentiment = neg) = 1
A. True B. False C. It depends



Prior probability

Of 100 students completing a course, 20 were business major. Ten students
received As in the course, and three of these were business majors.

What is the probability that a randomly selected student got an A?
P(A =True)="7

A.0.03 B.0.1 C.0.3 D.0.2 E.None ofthese



Joint probability: Two or more events BOTH
happening

Of 100 students completing a course, 20 were business major. Ten students
received As in the course, and three of these were business majors.

What is the probability that a randomly selected student is a
Business student and gets an A?

P(A=True, B=True)=? A.0.03 B.0.1 C.0.3 D.0.2 E.None ofthese
"the probability of A and B"

B{usiness Blusiness P(A=True) = P(A=True, B=True) + P (A=True, B=False)
student) = True | student) = False
marginalization

A = True

Will the values in a joint probability table
always sumto 1?
A.Yes B.No

A = False




But how does evidence change things?
Conditional probability

Of 100 students completing a course, 20 were business major. Ten students
received As in the course, and three of these were business majors What is the
probability of A after knowing B is true?

What is the probability that a randomly selected business student

gets an A?
P(A=True | B=True) =" A.0.03 B.0.1 C.0.3 D.0.2 E.None of these

"the probability of A given B"

B(usiness B(usiness P(A=True | B = True) = P(A=True, B=True) / P(B=True)
student) = True | student) = False

A = True 0.03 0.07

A = False 0.17 0.73




Inference

e Often we will be able to measure some information, but we want to make
statements about things that are not directly in our table of information.

* E.g., we want to know what is the probability of a toothache in general (the prior
probability), never mind whether there's a cavity, catch, etc.

toathache 1 toothache

cerch | a1 carchcarch | 1 carch

cavirv | .108| .012 072 | .008

—cavir | .016| .064 | .144| 576

Inference = Using known facts to derive others



Inference by enumeration

 Start with the joint probability distribution:

toothache - toothache

catch | o catch) carch | — carch

cavire | 108 | .012 072 | .008
= caviry | 016 | .064 44 | 576

* For any proposition ¢, sum the atomic events where it is true: P(¢) =2 ., L P(w)



Inference by enumeration

 Start with the joint probability distribution:

\ toothache ‘ 1 roothache

catch | — catch)catch| — catch
cavity | .108| .012 | .072| .008

~caviry | .016| .064 | .144 | 576

* For any proposition ¢, sum the atomic events where it is true: P(¢) =2 ., L P(w)
e P(toothache) =0.108 + 0.012 + 0.016 + 0.064 =0.2



Inference by enumeration

e Start with the joint probability distribution:

* Can also compute conditional probabilities:
= P(—cavity A toothache)

P(—cavity | toothache)

toothache

- toothache

caviry

catch | o carch) carch| - carch

108 | .012

- cavity

016 | .064

144 | 576

P(toothache)

0.016+0.064

0.108 + 0.012 + 0.016 + 0.064

=04




N O r m a | i Za t i O n roothache 1 toothache

carch | 1 catch) catch| — carch
cavire | 108 | .012 072 | .008
= caviry | 016 | .0864 JA44 | 576

P(cavity | toothache) P(cavity A toothache)

P(toothache)
= 0.108+0.012

0.108 + 0.012 + 0.016 + 0.064

P(—cavity | toothache) P(—cavity A toothache)

P(toothache)
= 0.016+0.064

0.108 + 0.012 + 0.016 + 0.064

These terms are a pain to compute




Normalization

toothache - toothache

carch | 1 catch) catch| — carch
cavirv | .108| .012 072 | .008
— caviry | 016 | .064 Jd44 | 576

P(cavity | toothache) = 0.12

0.108 + 0.012 + 0.016 + 0.064

P(—cavity | toothache) = 0.08

0.108 + 0.012 + 0.016 + 0.064



Normalization

toothache - toothache

carch | 1 catch) catch| — carch
cavirv | .108| .012 072 | .008
— caviry | 016 | .064 Jd44 | 576

P(cavity | toothache) = o 0.12

P(—cavity | toothache) = a 0.08

hat value is ??

W
A1
C
D

O §
0.108 + 0.012 + 0.016 + 0.064 . 0.108 + 0.012 + 0.016 + 0.064

. Something else
P(—cavity | toothache) + P(cavity | toothache) = o 0.08 + 0 0.12 = ?? E. Ihave noideal



N O r m a | i Za t i O n roothache 1 toothache

carch | 1 catch) catch| — carch
cavire | 108 | .012 072 | .008
= caviry | 016 | .0864 JA44 | 576

P(cavity | toothache) + P(— cavity | toothache) =a0.12 + 2 0.08 =1

a=1/(0.12 + 0.08)

a=1/0.2=5

<P(cavity | toothache), P(— cavity | toothache)> =< a 0.12, o 0.08 > =<0.6, 0.4>

o= 1

Compare to computing:
0.108 + 0.012 + 0.016 + 0.064




Bayes Theorem

If P(E2)>0, then
P(E1|E2) = P(E2|E1)P(E1) / P(E2)

This can be derived from the definition of conditional probability.



Bayes Rule example

A patient takes a lab test and the result comes back positive. The test
has a false negative rate of 2% and false positive rate of 3%.
Furthermore, 0.8% of the entire population have this cancer.

What is the probability of cancer if we know the test result is positive?

"False negative" = Considering only situations where there is cancer, test is negative
"False positive" = Considering only situations where there is not cancer, test is positive




Bayes Rule example

A patient takes a lab test and the result comes back positive. The test
has a false negative rate of 2% and false positive rate of 3%.
Furthermore, 0.8% of the entire population have this cancer.

What is the probability of cancer if we know the test result is positive?

We know: We want:

"False negative" = Considering only situations where there is cancer, test is negative
"False positive" = Considering only situations where there is not cancer, test is positive




Bayes Rule example

A patient takes a lab test and the result comes back positive. The test
has a false negative rate of 2% and false positive rate of 3%.
Furthermore, 0.8% of the entire population have this cancer.

What is the probability of cancer if we know the test result is positive?

We know: We want:

P(cancer|Test=pos)
P(Test=pos|-cancer) =0.03 FP

P(Test=neg|cancer) =0.02 FN

P(cancer) = 0.008 Prior




Bayes Rule example

A patient takes a lab test and the result comes back positive. The test
has a false negative rate of 2% and false positive rate of 3%.
Furthermore, 0.8% of the entire population have this cancer.

What is the probability of cancer if we know the test result is positive?

We know:

P(Test=pos|-cancer) =0.03 FP
P(Test=neg|-cancer) = 0.97

P(Test=pos|cancer) = 0.98
P(Test=neg|cancer) =0.02 FN
P(cancer) =0.008 Prior

P(-cancer) =0.992

We want:

P(cancer|Test=pos) =

(Testpos | cancer)p(cancer)
P(Test=pos|cancer)P(cancer _
P(Test=pos]) =0.21
0.0376
0.00784

P(Test=pos) = P(Test=pos, cancer) +
P(Test=pos, —cancer)
0.02976
0.98 0.008
P(Test=pos, cancer) = P(Test=pos|cancer)P(cancer)

0.03 0.992
P(Test=pos, —cancer) = P(Test=pos|—cancer)P(—cancer)



Returning to review sentiment classification...

Our evidence is the text in the review. We want to estimate

P(Sentiment = pos | text)

But we could never directly estimate this because we're unlikely to have ever seen
this specific text before! How can Bayes rule help us?

P(text|Sentiment = pos) P(Sentiment = pos)

P(Sentiment = pos | text) = P(text)



Returning to review sentiment classification...

P(Sentiment = pos | text)«xP(text|Sentiment = pos) P(Sentiment = pos)
Simplifying assumption 1: Represent text with a "bag of words" representation

P(w; = true,w, = true,w; = false, ...|Sentiment = pos)

But can we learn this??



Independence: Intuition

* Events are independent if one has nothing whatever to do with
others. Therefore, for two independent events, knowing one
happening does not change the probability of the other event
happening.

* one toss of coin is independent of another coin (assuming it is a regular coin).

 price of tea in England is independent of the result of general election in
Canada.



Independence: Definition

* Events A and B are independent iff:

P(A, B) = P(A) x P(B)
which is equivalent to
P(A|B)=P(A) and
P(B|A) = P(B)
when P(A, B) >0.

T1: the first toss is a head.
T2: the second toss is a tail.

P(T2|T1) = P(T2)



Conditional Independence

* Dependent events can become independent given
certain other events.

* Example,
e Size of shoe

* Size of vocabulary
« 77

* Two events A, B are conditionally independent given
a third event C iff
P(A|B, C) =P(A|C)



Conditional Independence: Utility via Naive Bayes

* Let E1 and E2 be two events, they are conditionally independent given E iff
P(E1|E, E2)=P(E1]|E),

that is the probability of E1 is not changed after knowing E2, given E is true.

* Equivalent formulations:
P(E1, E2|E)=P(E1|E) P(E2|E)
P(E2|E, E1)=P(E2|E)

P(w; = true,w, = true,w; = false, ...|Sent = pos)
= P(w; = true|Sent = pos) P(w, = true|Sent = pos)P(w; = false|Sent = pos) ...

A ha! These we can learn from data!



Returning to review sentiment classification...

P(Sentiment = pos | text)«xP(text|Sentiment = pos) P(Sentiment = pos)

Simplifying assumption 1: Represent text with a "bag of words" representation
P(w; = true,w, = true,w; = false, ...|Sentiment = pos)

Simplifying assumption 2: Words are conditionally independent given sentiment

P(w,; = true,w, = true,ws = false, ...|Sent = pos)
= P(w; = true|Sent = pos) P(w, = true|Sent = pos)P(wz = false|Sent = pos) ...



Training a Naive Bayes classifier

P(Sentiment = pos | text)«xP(text|Sentiment = pos) P(Sentiment = pos)

Simplifying assumption 1: Represent text with a "bag of words" representation
P(w; = true,w, = true,w; = false, ...|Sentiment = pos)

Simplifying assumption 2: Words are conditionally independent given sentiment

P(w,; = true,w, = true,ws = false, ...|Sent = pos)
= P(w; = true|Sent = pos) P(w, = true|Sent = pos)P(wz = false|Sent = pos) ...



Practice with Probability

* Which of the following statements are generally true? (If they are
true only in certain conditions, state what the conditions are)

P(A,B) = P(A)*P(B)
P(A,B) = P(A|B)

P(A,B) = P(A|B)P(B)
P(A|B) + P(A|-B)=1
P(-A) + P(A) =1

P(-A, B) + P(A, B) = P(B)
P(-A|B) + P(A|B) = P(B)



