Foundations of Programming

Dictionaries, Markov Models and Files

Announcements

- Enrichment video 3 is up. "Due" this morning, but you can still do it.
- Diversity/inclusion lunch next Monday. Watch for a Google form if you are interested in attending

Learning outcomes/key ideas

- Markov chains
- Representing data in a dictionary
- (Simple) reading data from a file

Algorithmic Authorship... ?

I like to run and to go on vacation. Often I run to see things while I am on vacation. I will take a vacation this weekend to Seattle.
suppose this text represents my "style" ...

How could a program author new prose in this same style?!

Algorithmic Authorship... !

> I like to run and to go on vacation. Often I run to see things while I am on vacation. I will take a vacation this weekend to Seattle.
suppose this text represents my "style" ...

What would be a reasonable test for sentence-ending?

Algorithmic authoring examples...

'Cause somethin' like he left knee and a harp," said he had to the whole school? The shouting and then some strange and Mrs. "Well, I know Hagrid; they spotted handkerchief and get him get rid of course, had a gigantic beet with her," he knew what to all he's

The club isn't the flames burn on my baby, come on I'm singing like a little while longer When I'm home to say go for hours and smoke Keep watching over Durin's son If I just me in love with the mountain side Desolation comes upon the bassline Are in

Who's the original human author of each of these?

Hint: they're all British...

The Senators and the date of a written declaration that Purpose, they shall consist of nine States, shall not, when he shall have such Vacancies. The President pro tempore, in the Desire of a Qualification to the Speaker of the Senate. Article 6. When vacancies by the office upon probable

Markov Chains (Models)

Techniques for modeling any sequence of natural data

speech, text, sensor data...

1st-order Markov Model
(defining property)
Each item depends only on the one immediately before it .

I like to run and to go on vacation Often I run to see things while I am on vacation I will take a vacation this weekend to Seattle

Building a Markov model to generate text:

1. Define the vocabulary (what words have we seen?)
2. Represent a state at a particular time t
3. Determine the transition probabilities

Lists are sequential containers:

$$
\begin{aligned}
& \mathrm{L}=[47,5,47,42] \\
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& \text { elements are looked up by their location, or index, starting from } 0
\end{aligned}
$$

Dictionaries are arbitrary containers:

elements (or values) are looked up by a key starting anywhere you want! Keys don't have to be ints!

Dictionaries are arbitrary containers:

yr = \{'rabbit':1999, 'ox':1997\}
 key
 key value

elements (or values) are looked up by a key starting anywhere you want! Keys don't have to be ints!

What's up with
yr's data here?

Dictionaries are arbitrary containers:

elements (or $\underline{\text { values) }}$) are looked up by a key starting anywhere you want! Keys don't have to be ints!

Dictionaries are arbitrary containers:

$$
\begin{aligned}
\mathrm{yr}= & \{\text { 'rabbit': }[1999,1987,1975, \ldots], \\
& \text { 'ox': }[1997,1985,1973, \ldots], \\
& \text { 'tiger': }[1998,2010, \ldots], \ldots\}
\end{aligned}
$$

What type are the keys?
A. String
B. List
C. int
D. Dictionary

Dictionaries are arbitrary containers:

$$
\begin{aligned}
\mathrm{yr}= & \{ \\
& \text { 'rabbit': }[1999,1987,1975, \ldots], \\
& \text { ox': }[1997,1985,1973, \ldots], \\
& \text { 'tiger': }[1998,2010, \ldots], \ldots\}\}
\end{aligned}
$$

What type are the keys?

What type are the values?
A. String
B. List
C. int
D. Dictionary

Dictionaries are arbitrary containers:

$$
\begin{aligned}
z= & \{' \text { rabbit': }[1999,1987,1975, \ldots], \\
& \text { 'ox': }[1997,1985,1973, \ldots], \\
& \text { 'tiger': }[1998,2010, \ldots], \ldots\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Is 'dragon' a } \\
& \text { key in } \mathbf{z} \text { ? }
\end{aligned}
$$

Is 1969 in
z['dragon']?
if 'dragon' in \mathbf{z}
if 1969 in $\mathbf{z}[$ 'dragon']

```
LoW = [ 'spam', 'spam', 'poptarts', 'spam' ]
```

Write the code that will build a dictionary where the keys are the words in the list and the values are their counts:

```
counts = {} # empty dictionary
for word in LoW:
```

\qquad
else:

```
Useful info!
# Add the key 'hello'
# and set its value to 0
counts['hello'] = 0
# Get the value associated
# with 'hello'
counts['hello']
# check if 'hello' is a key
'hello' in counts
```

LoW = ['spam', 'spam', 'poptarts', 'spam']

```
                    counts will be.
counts = {}
for word in LoW:
    if word not in counts:
        counts[word] = 1
    else:
        counts[word] += 1
```

```
{'spam':1}
```

{'spam':1}
{'spam':2}
{'spam':2}
{'spam':2, 'poptarts':1}
{'spam':2, 'poptarts':1}
{'spam':3, 'poptarts':1}

```
    {'spam':3, 'poptarts':1}
```

final d

```
LoW = [ 'spam', 'spam', 'poptarts', 'spam' ]
```


Files...

text $=\mathrm{f}$. read ()
reads the whole file into the string text
f.close()
closes the file
(optional)

text

'I like to run and to go on vacation. ...
LoW = text.split()
['I', 'like', to', ...]

def word_count(filename):

```
f = open( filename )
text = f.read()
f.close()
LoW = text.split()
print("There are",len(LoW),"words")
```

What if we wanted the number of different words in the file?

This would be the author's vocabulary count, instead of the total word count.

```
from
        filename
        import defaultdict
def vocab_count( filename ):
    f = open( filename )
    text = f.read()
    f.close()
LoW = text.split()
print "There are", len(LoW), "words." } word counting
d = defaultdict( int )
for w in LoW:
    if w not in d:
        d[w] = 1
Tracking the number of
                                occurrences of each word with a dictionary, d .
    else:
        d[w] += 1
print "There are", len(d), "_distinct_ words.\n"
return d # return d for later use by other code...
```


Vocabulary, anyone?

Shakespeare used 31,534 different words -- and a grand total of 884,647 words, counting repetitions across all of his works....
http://www-math.cudenver.edu/~wbriggs/ar/shakespeare.html

Shakespearean coinages

gust
besmirch
unreal
superscript
watchdog
swagger
successful
affined rooky attasked
out-villained

There's also a contemporary British author in the Oxford English Dictionary...
Who?

Vocabulary, anyone?

Shakespeare used 31,534 different words -- and a grand total of 884,647 words, counting repetitions across all of his works....
 http://www-math.cudenver.edu/~wbriggs/ar/shakespeare.htm|

```
    Shakespearean coinages
        gust
besmirch
    unreal
superscript
watchdog
    affined
    rooky
    attasked
out-villained
swagger
```


successful

muggle

'Muggle' goes into Oxford English Dictionary
JK Rowling's word for non-wizards "muggle" - has made it into the new edition of the Oxford English Dictionary (OED).

The draft definition according to the dictionary's website says:

- Muggle: invented by JK (Joanne Kathleen) Rowling (b. 1965), British author of children's fantasy fiction (see quot. 1997).

In the fiction of JK Rowling: a person who possesses no magical powers. Hence in allusive and extended uses a person who lacks a particular skill or skills, or who is regarded as inferior in some way.

Our Markov Model

Try it!

```
                        I like to run and to go on vacation.
``` Often I run to see things while I am on vacation. I will take a vacation this weekend to Seattle.
keys
values
Original file
Markov Model
A dictionary!

What are the keys?

What are the
values?

\section*{Markov Models are generative!}

\section*{A key benefit of Markov Models is that they can generate feasible data!}

Original file:
```

    I like to run and to go on vacation.
    Often I run to see things while I am on
    vacation. I will take a vacation this
        weekend to Seattle.
    ```

\section*{Markov Models are generative!}

A key benefit of Markov Models is that they can generate feasible data!

\section*{Original file:}
\[
\begin{aligned}
& \text { I like to run and to go on vacation. } \\
& \text { Often I run to see things while I am on } \\
& \text { vacation. I will take a vacation this } \\
& \text { weekend to Seattle. }
\end{aligned}
\]

Generated text:
'I like to Seattle. I like to go on vacation. Often I am on vacation. Often I like to go on vacation. Often I am on vacation. I am on vacation. I run and to Seattle. I will take a'

\section*{WMSCI 2005}

> Rooter: A Methodology for the Typical Unification of Access Points and Redundancy

Jeremy Stribling, Daniel Aguayo and Maxwell Krohn
http://pdos.csail.mit.edu/scigen/
\(\uparrow\)
Markov-generated submission accepted to WMSCI 2005

Not a first-order model ... but a third-order model

\title{
Rooter: A Methodology for the Typical Unification of Access Points and Redundancy
}

\author{
Jeremy Stribling, Daniel Aguayo and Maxwell Krohn
}

Abstract
Many physicists would agree that, had it not been for congestion control, the evaluation of web browsers might never have occurred. In fact, few hackers worldwide would disagree with the essential unification of voice-over-IP and publicprivate key pair. In order to solve this riddle, we confirm that SMPs can be made stochastic, cacheable, and interposable.

\section*{I. Introduction}

Many scholars would agree that, had it not been for active networks, the simulation of Lamport clocks might never have occurred. The notion that end-users synchronize with the investigation of Markov models is rarely outdated. A theoretical grand challenge in theory is the important unification of virtual machines and real-time theory. To what extent can web browsers be constructed to achieve this purpose?

Certainly, the usual methods for the emulation of Smalltalk that paved the way for the investigation of rasterization do not apply in this area. In the opinions of many, despite the fact that conventional wisdom states that this grand challenge is continuously answered hy the study of access noints we

The rest of this paper is organized as follows. For starters, we motivate the need for fiber-optic cables. We place our work in context with the prior work in this area. To address this obstacle, we disprove that even though the muchtauted autonomous algorithm for the construction of digital-to-analog converters by Jones [10] is NP-complete, objectoriented languages can be made signed, decentralized, and signed. Along these same lines, to accomplish this mission, we concentrate our efforts on showing that the famous ubiquitous algorithm for the exploration of robots by Sato et al. runs in \(\Omega((n+\log n))\) time [22]. In the end, we conclude.

\section*{II. Architecture}

Our research is principled. Consider the early methodology by Martin and Smith; our model is similar, but will actually overcome this grand challenge. Despite the fact that such a claim at first glance seems unexpected, it is buffetted by previous work in the field. Any significant development of secure theory will clearly require that the acclaimed realtime algorithm for the refinement of write-ahead logging by Edward Feigenbaum et al. [15] is impossible; our application

\section*{the Typical Unification d Redundancy}

\author{
and Maxwell Krohn
}
rest of this paper is organized as follows. For starters, otivate the need for fiber-optic cables. We place our in context with the prior work in this area. To adthis obstacle, we disprove that even though the muchautonomous algorithm for the construction of digital\(\log\) converters by Jones [10] is NP-complete, objected languages can be made signed, decentralized, and . Along these same lines, to accomplish this mission, we ntrate our efforts on showing that the famous ubiquitous thm for the exploration of robots by Sato et al. runs in \(+\log n)\)) time [22]. In the end, we conclude.

\section*{II. ARCHITECTURE}
research is principled. Consider the early methodology artin and Smith; our model is similar, but will actually ome this grand challenge. Despite the fact that such \(m\) at first glance seems unexpected, it is buffetted by us work in the field. Any significant development of theory will clearly require that the acclaimed reallgorithm for the refinement of write-ahead logging by dd Feigenbaum et al. [15] is impossible; our application different Thic mov or mav not actually hold in realits
third-order wardrobe?

'Cause somethin' like he leftnee and a harp," said he had to the whole school? The shouting and then some strange and Mrs. "Well, I know Hagrid; they spotted handkerchief and get him get rid of course, had a gigantic beet with her," he knew what to all he's

All the sky with the sun in the sun in the church where you're gone Lucy in my eyes. There beneath the girl with an hourglass And then the banker never wears a lot to hold your hand. Can't buy me tight, tight Owww! Love is love I can't hide,
Who is the author? What is the work? What is going on?

\section*{HAMLET sh.}

This is but ourselves. No, faith, My uncle! O royal bed of confession Of your rue for leave to nature; to this time I should weep for thy life is rotten before he is. have sworn 't. Or my blood. I have closely sent for nine; and unprofitable,

\section*{Consmtund}

The Senators and the date of a written declaration that Purpose, they shall consist of nine States, shall not, when he shall have such Vacancies. The President pro tempore, in the Desire of a Qualification to the Speaker of the Senate. Article 6. When vacancies by the office upon probable```

