Foundations of Programming

Naive Bayes revisited and Debugging Strategies



Announcements

* Diversity in Computing Lunch: Meet here after next class



Learning outcomes/key ideas

* Probability and Naive Bayes, revisited
* Debugging strategies
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Joint probability: Two or more events BOTH

happening

(D)

Of 100 students completing a course, 20 were business major. Ten students
received Aiin the course, and three of these were business majors.
(p

What is the probability that a randomly selected student is a
Business student and gets an A?
P(A =True, B=True) =7

"the probability of A and B"

. 0.1 C.0.3 D.0.2 E.None of these

P(A=True) = P(A=True, B=True) + P (A=True, B=False)
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marginalization
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values in a joint probability table
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But how does evidence change things?
Conditional probability

Of 100 students completing a course, 20 were business major. Ten students
received As in the course, and three of these were business majors What is the

probability of A after knowing B is true?
What is the probability that a randomly selected business student 3{% _

gets an A? - 0.\
P(A = True(DB =True) =7 A.0.03 B.0.1 C.0.3 D.0.2 @one of these
"the probability of A given B"
-0 / (o.0240- \:&\
B(usiness B(usiness P(A=True | B = True) = P(A=True, B=True) / P(B=True)
student) = True [|[student) = False ( Cl - j
A =True 0.03 0.07 P ’VD\ SO \l’? P <a
V = A
A = False 0.17 0.73 \ (l\/fb\ ? ({E ? (A\




Bayes Theorem

If P(E2)>0, then
P(E1|E2) = P(E2|E1)P(E1) / P(E2)

This can be derived from the definition of conditional probability.



Bayes Rule example |l

Marie is getting married tomorrow, at an outdoor ceremony in the desert. In recent years, it has
rained only 5 days each year. Unfortunately, the weatherman has predicted rain for tomorrow.
When it actually rains, the weatherman correctly forecasts rain 90% of the time. When it doesn't
rain, he incorrectly forecasts rain 10% of the time. What is the probability that it will rain on the

day of Marie's wedding?

Let's start with this question: What if the weatherman hadn't made a
prediction at all? What is the probability it will rain?



Returning to review sentiment classification...

Our evidence is the text in the review. We want to estimate

P(Sentiment = pos | text)

But we could never directly estimate this because we're unlikely to have ever seen
this specific text before! How can Bayes rule help us?

P(text|Sentiment = pos) P(Sentiment = pos)

P(Sentiment = pos | text) = P(text)



Returning to review sentiment classification...

P(Sentiment = pos | text)«xP(text|Sentiment = pos) P(Sentiment = pos)
Simplifying assumption 1: Represent text with a "bag of words" representation

P(w; = true,w, = true,w; = false, ...|Sentiment = pos)

But can we learn this??



Independence: Intuition

* Events are independent if one has nothing whatever to do with
others. Therefore, for two independent events, knowing one
happening does not change the probability of the other event
happening.

* one toss of coin is independent of another coin (assuming it is a regular coin).

 price of tea in England is independent of the result of general election in
Canada.



Independence: Definition

* Events A and B are independent iff:

P(A, B) = P(A) x P(B)
which is equivalent to
P(A|B)=P(A) and
P(B|A) = P(B)
when P(A, B) >0.

T1: the first toss is a head.
T2: the second toss is a tail.

P(T2|T1) = P(T2)



Conditional Independence: Utility via Naive Bayes

* Let E1 and E2 be two events, they are conditionally independent given E iff
P(E1|E, E2)=P(E1|E)

that is the probability of E1 is not changed after knowing E2, given E is true.

* Equivalent formulations:
P(E1, E2|E)=P(E1|E) P(E2|E)
P(E2|E, E1)=P(E2|E)

P(w; = true,w, = true,w; = false, ...|Sent = pos)
= P(w; = true|Sent = pos) P(w, = true|Sent = pos)P(w; = false|Sent = pos) ...

A ha! These we can learn from data!



Returning to review sentiment classification...

P(Sentiment = pos | text)«xP(text|Sentiment = pos) P(Sentiment = pos)

Simplifying assumption 1: Represent text with a "bag of words" representation
P(w; = true,w, = true,w; = false, ...|Sentiment = pos)

Simplifying assumption 2: Words are conditionally independent given sentiment

P(w,; = true,w, = true,ws = false, ...|Sent = pos)
= P(w; = true|Sent = pos) P(w, = true|Sent = pos)P(wz = false|Sent = pos) ...



Training a Naive Bayes classifier

P(Sentiment = pos | text)«xP(text|Sentiment = pos) P(Sentiment = pos)

Simplifying assumption 1: Represent text with a "bag of words" representation
P(w; = true,w, = true,w; = false, ...|Sentiment = pos)

Simplifying assumption 2: Words are conditionally independent given sentiment

P(w,; = true,w, = true,ws = false, ...|Sent = pos)
= P(w; = true|Sent = pos) P(w, = true|Sent = pos)P(wz = false|Sent = pos) ...



Practice with Probability

* Which of the following statements are generally true? (If they are
true only in certain conditions, state what the conditions are)

P(A,B) = P(A)*P(B)
P(A,B) = P(A|B)

P(A,B) = P(A|B)P(B)
P(A|B) + P(A|-B)=1
P(-A) + P(A) =1

P(-A, B) + P(A, B) = P(B)
P(-A|B) + P(A|B) = P(B)



